www.hangar57.com

Vaya al Contenido

Menu Principal

TEOREMA DE BERNOULLI

PROYECTO AMATEUR


Teorema de Bernoulli y sus Consecuencias
El teorema que por primera vez enunció Daniel Bernoulli en el año 1726, dice: en toda corriente de agua o de aire la presión es grande cuando la velocidad es pequeña y, al contrario, la presión es pequeña cuando la velocidad es grande. Existen algunas limitaciones a este teorema, pero aquí no nos detendremos en ellas.

Por el tubo AB se hace pasar aire. Donde la sección de este tubo es pequeña (como ocurre en a), la velocidad del aire es grande, y donde la sección del tubo es grande (como en b), la velocidad del aire es pequeña. Si la velocidad es grande, la presión es pequeña, y donde la velocidad es pequeña, la presión es grande. Como la presión del aire en a es pequeña, el líquido se eleva por el tubo C; al mismo tiempo, la gran presión del aire en el punto b hace que el líquido descienda en el tubo D .

Para ello se puede considerar los puntos 1 y 2, de un fluido en movimiento, determinando la energía mecánica de una porción de éste, a lo largo del filete de fluido en movimiento que los une.

Si m es la porción de masa considerada υ, su rapidez, Υ la altura sobre el nivel tomado como base, la presión y a densidad en cada uno de los puntos, se puede escribir utilizando el teorema trabajo-energía cinética:



Si ahora se di vide a todos los términos de los dos miembros, entre la masa considerada, se obtendrá la ecuación de Bernoulli, que corresponde a la ley de la conservación de la energía por unidad de masa. Si el fluido es incompresible, como supondremos en lo sucesivo, donde (P1 = P2 = P), la ecuación de Bernoulli adopta la forma:


Así como la estática de una partícula es un caso particular de la dinámica de la partícula, igualmente la estática de los fluidos es un caso especial de la dinámica de fluidos. Por lo tanto, la ecuación (6.10) debe contener a la ecuación (6.5) para la ley de la variación de presión con la altura para un fluido en reposo. En efecto, considerando un fluido en reposo, y reemplazando (υ1 = υ2 = υ) en la ecuación de Bernoulli, se obtiene:  
que es precisamente la ecuación fundamental de la estática de fluidos.

Ejemplo
Fluido humano. Una multitud de espectadores pretende salir de una gran sala de proyecciones al término de la función de cine. El salón es muy ancho, pero tiene abierta al fondo sólo una pequeña puerta que franquea el paso a una galería estrecha que conduce hasta la calle. La gente, impaciente dentro de la sala, se aglomera contra la puerta, abriéndose paso a empujones y codazos. La velocidad con que avanza este “fluido humano” antes de cruzar la puerta es pequeña y la presión es grande. Cuando las personas acceden a la galería, el tránsito se hace más rápido y la presión se alivia. Si bien este fluido no es ideal, puesto que es compresible y viscoso (incluso podría ser turbulento), constituye un buen modelo de circulación dentro de un tubo que se estrecha. Observamos que en la zona angosta la velocidad de la corriente es mayor y la presión es menor.


 
Regreso al contenido | Regreso al menu principal